

 \Box 1st / \Box 2nd/ \boxdot 3rd year / \boxdot Winter / \Box Spring semester

Module title : French for foreigners
Module leader:
Nathalie CARADEC (<u>nathalie.caradec@enssat.fr</u>)
Compulsory module
Prerequisite: placement test for level group
Duration of module : 30h
Module components /Types of Courses
Practical courses in small group
FCTS: 4
Work load:
-In class studying: 30h
-Student managed learning: 20h
Content:
CEFR French levels are used on the four skills speaking – listening-reading and writing
• Level A1-A2
can introduce him/herself, can ask and answer questions about personal details such as where he/she lives,
people he/ she knows, and things he/she has. Can interact in a simple way provided the other person talks slowly
and clearly.
• Level B1-B2
Can understand the main points of clear standard input on familiar matters regularly encountered in work, school, leisure, etc. Can deal with most situations likely to arise whilst travelling in an area where the language is spoken. Can produce simple connected text on topics which are familiar or of personal interest. Can describe experiences and events, dreams, hopes & ambitions and briefly give reasons and explanations for opinions and plans.
Common European Framework of References : CECRL (Cadre Européen Commun de Références pour les Langues)
Learning outcomes:
Development of the different skills according to the level.
- Written assignment
- Oral assignment
Language of instruction: French
Additional information

Module title:			
Integrated systems and high-level synthesis			
Module leader:			
Emmanuel CASSEAU (<u>emmanuel.casseau@enssat.fr</u>)			
Type of module			
(compulsory module, required			
Elective module, elective module)			
Compulsory module			
24 hours			
Module components /Types of			
Courses (lectures, practical course,			
lab, tutorial, internship,)			
Lecture : 18 h, lab : 6 h			
ECTS: 2			
Work load			
-In class studying: 24h			
-Student managed learning: 18h			
Content			
Hardware technologies and applications			
 System on Chip (SoC): architectural solutions, hardware platforms 			
 Design flow and SoC design methodologies 			
 Signal flow graph, algorithmic transformations (retiming, pipelining, parallelization, associativity, 			
distributivity)			
Principle of high level synthesis			
 High level synthesis steps (scheduling, allocation, binding, optimizations) and associated 			
techniques			
Learning outcomes			
At first, this course aims to present what is a system-on-a-chip (SoC) and the principles of SoC design. The			
methodologies as well as the main used tools are presented. Then the goal is to present a method for designing			
specific digital circuits aimed at automating the transition from a high-level description of an application to its			
hardware description while allowing to explore the design space (mainly throughput versus area). This method is			
called high level synthesis. The targeted applications are signal processing-based ones. Typically, the application is			
represented in the form of a signal flow graph on which formal transformations will be applied in order to			
represented in the form of a signal flow graph on which formal transformations will be applied in order to			
optimize its naroware implementation according to certain criteria (surface, flow, etc.). The various steps and			
techniques (transformations, component selection, scheduling, binding) of the high-level synthesis process are			
Assessment			
- Written assignment 🗹			
Language of instruction			
EINGLISH			

 \Box 1st / \Box 2nd/ \boxdot 3rd year / \boxdot Winter / \Box Spring semester

Module title System on Chip Conception
Module leader
Bertrand LE GAL (Bertrand.le-gal@enssat.fr)
Type of module
(compulsory module, required
Elective module, elective module)
Compulsory module
Duration of module
18 hours
Module components /Types of
Courses (lectures, practical course,
lab, tutorial, internship,)
Lectures (6h) and Lab (12h)
ECTS: 2
Work load
-In class studying: 18 hours
-Student managed learning: 18 hours
Content
This lecture presents the key aspect associated to System On Chip (SoC) design. SoC are platforms that embedded
a processor and hardware accelerator, jointly with inputs/outputs and dedicated co-processors. SoC are now
massively used in industry (phones, hardware platforms, and many devices) and cannot be reduced to the
simple concatenation of general-purpose processor (GPP) and hardware accelerators. It is necessary to propose
new design flow that considers the advantages of these platforms.
Besides that, as the space design is wide (both in hardware and software) it is necessary to optimally distribute
the process in the hardware part and the software part: this is called the Hardware/software (HW/SW)
nartitioning and is matter of importance to benefit from the SoC special architecture
Finally, an introduction on ombodded Linux and how to man bardware accelerator at the operating system level is
Finally, an incroduction of embedded Linux and now to map hardware accelerator at the operating system lever is
presented.
In the labs, the students will use a Zybo board with Vivado in order to create a signal processing application and
see the performance difference between a pure software approach and a HW/SW approach
Learning outcomes
SoC architectures and specificities
- Soc architectures and specificities
- Soc design flow
- Hardware/software partitioning
- Embedded Linux
- Vivado tools and Zybo board.
Assessment
- Oral assignment 🗹
Language of instruction
ENGLISH
Additional information: B1 level is a prerequisite

□1st / □2 nd /☑	1 3rd year /🗹 Winte	er / CSpring semester
----------------------------	---------------------	-----------------------

Module title:
High Performance Processor
Middule leader:
Daniel CHILLET (<u>daniel.chillet@elissat.ir</u>)
(compulsony module, required
Elective module, elective module)
Compulsory module
Duration of module: 20 hours
Module components /Types of
Courses (lectures, practical course,
lab. tutorial. internship)
Lecture (22 h), exercise (4 h) and labs (8 h)
ECTS: 3
Work load
-In class studying: 34 h
-Student managed learning: 26 h
Content
Introduction
 Reminders on basic computer architecture (pipeline, cache memory)
 Advanced techniques for high performance processors
Graphical Processing Unit architecture and programming
Learning outcomes
The aim of this courses is to explain how the processors have evolved since the first model, also called Von
Neumann processor.
The course discusses why and how these processors deliver high performance computing capability and which
techniques are implemented in these processors to provide more and more performance, year by year.
Several techniques are highlighted and explained with several examples.
The last part of the course is about GPU architecture and programming.
From this course, the students will be able to understand how recent processors work and they will also be able to
ontimize their code in order to exploit the processors performances
Assessment
- Written assignment 🗹
o Coefficient 2
- Oral assignment 🗹
Language of instruction
ENGLISH
Additional information: B1 level is a prerequisite

□1st / □2 nd /☑ 3rd year /☑ Wint	ter / C Spring semester
---	-------------------------

Module title Code compilation and Optimisation		
Module leader		
Bertrand LE GAL (<u>Bertrand.le-gal@enssat.fr</u>)		
Type of module		
(compulsory module, required		
Compulsory module		
Duration of module		
16 hours		
Module components /Types of		
Courses (lectures, practical course,		
lab, tutorial, internship,)		
Eectures (61) and Lab (101)		
Work load		
-In class studying: 16 hours		
-Student managed learning: 12 hours		
Content		
This course provides the foundational understanding of the mechanisms behind code compilation and		
optimization, with the goal of producing efficient application implementations on modern processor		
architectures.		
Complication Flow		
Makefile Tool		
Program Execution		
Code Performance Measurement		
Instrumentation: Invasive/Non-invasive Profiling		
Some Tools: gprof, valgrind		
Code Optimization		
Role of Optimizations in the Compilation Flow		
Optimization with GCC		
Optimization in Relation to Memory Hierarchy		
The objective of this course is to understand and master the stages of compiling code written in the Clanguage to		
measure a program's performance, and to identify bottlenecks.		
At the end of the course, students will be able to understand the compilation and code optimization techniques		
available in modern compilers, with the aim of producing implementations that are efficient in terms of both		
execution time and energy consumption.		
The major categories of code optimization will be studied, particularly those that take into account memory		
hierarchy. Execution analyses will enable students to link processor architectures with their impact on code		
execution.		
Assessment		
- Written assignment 🗹		
Language of instruction		
ENGLISH		
Auditional mormation: B1 level is a prerequisite		

🗖 1 st /	′ □ 2 nd /☑ 3rd	year /☑ Winter	/ Spring semester
----------	-----------------------------------	----------------	-------------------

Module title		
Optimization and artificial intelligence technics		
Module leader		
Pascal SCALART (<u>pascal.scalart@enssat.fr</u>)		
Type of module		
(compulsory module, required		
Elective module, elective module)		
Elective module		
Duration of module		
34 hrs		
Module components /Types of		
Courses (lectures, practical course,		
lab, tutorial, internship,)		
lectures (24 hrs), tutorial 6 hours and lab (4 hrs)		
Work load		
-In class studying: 34 hrs		
-Student managed learning: 42 hrs		
Content		
Pixel Classification in Hyperspectral imaging: The objective is to implement and compare several sequential		
approaches for dimensionality reduction (PCA, ICA, autoencoder) and supervised classification (K-NN, LDA, SVM,		
MLP, and other neural network-based approaches) for pixel classification with partial knowledge of the class		
membership of a training sample.		
Learning outcomes		
At the end of the course, the student can		
 Implement signal and image processing tools and domain-specific applications 		
 Apply reasoning, methods, and mathematical tools 		
Analyze and formalize a problem		
Assessment		
- Written assignment 🗹		
Language of instruction		
FRENCH or ENGLISH		
Additional information: B1 level is a prerequisite.		

🗖 1st /	′ □ 2 nd /☑ 3rd	year /☑ Winter	/ Spring semeste	r
---------	-----------------------------------	----------------	------------------	---

Module title
Project: artificial intelligence (design and simulation)
Module leader
Pascal SCALART (pascal.scalart@enssat.fr)
Type of module
(compulsory module, required
Elective module, elective module)
Elective module
Duration of module
22 hrs
Module components /Types of
Courses (lectures, practical course,
lab, tutorial, internship,)
lab (22 hrs)
2 ECTS
Work load
-In class studying 22 hrs
-Student managed learning 32 hrs
Content
This course focuses on the practical implementation of artificial intelligence techniques for solving classification or
segmentation tasks using neural networks. Students will design and train a neural network in Python, applying
tools such as PyTorch. The course also emphasizes the analysis of project requirements and performance
evaluation, guiding students through the entire process from understanding the problem to building a solution
and measuring its success.
This module is followed by artificial intelligence (implementation) where the designed solution is implemented
on a hardware target.
Learning outcomes
 Understand and apply AI methodologies for classification and segmentation tasks.
 Design, train, and evaluate neural networks using Python and machine learning frameworks.
 Analyze a project's specifications and translate them into an appropriate AI solution.
 Measure and interpret performance metrics to assess the effectiveness of the model.
Assessment
- Written assignment 🗹
Language of instruction
FRENCH or ENGLISH
Additional information: B1 level is a prerequisite.

🗖 1 st /	′ □ 2 nd /☑ 3rd	year /☑ Winter	/ Spring semester
----------	-----------------------------------	----------------	-------------------

Madula titla
Project: artificial intelligence (Implementation)
Module leader
Bertrand LE GAL (<u>Bertrand.le-gal@enssat.fr</u>)
Type of module
(compulsory module, required
Elective module, elective module)
Elective module
Duration of module
10 hrs
Module components /Types of
Courses (lectures, practical course,
lab, tutorial, internship,)
lab (10 hrs)
WORK load
-In class studying 10 nrs
-Student managed learning 24 ms
Content
This course is designed to guide students through the process of deploying AI models, specifically neural networks,
on hardware equipped with GPUs for enhanced performance. Building on previous work in neural network design
and training, students will focus on optimizing and implementing their AI solutions on hardware platforms with
NVIDIA GPUs. The course covers GPU programming, model optimization for hardware acceleration, and
performance measurement in real-world settings.
Learning outcomes
 Implement and deploy neural networks on GPU hardware for classification/segmentation tasks.
Optimize AI models for GPU-based hardware to improve training speed and inference efficiency.
Measure and analyze the performance of AI solutions on hardware platforms.
Assessment
- Written assignment 🗹
Language of instruction
FRENCH or ENGLISH
Additional information: B1 level is a prerequisite. Modules artificial intelligence (design and simulation) and High
Performance Processor are prerequisite.

\Box 1st / \Box 2nd/ \boxdot 3rd year / \boxdot Winter / \Box Spring semester

Module title
Source Coding
Module leader
Pascal SCALART (<u>pascal.scalart@enssat.fr</u>)
Type of module
(compulsory module, required
Elective module, elective module)
Elective module
Duration of module
16 hrs
Module components /Types of
Courses (lectures, practical course,
lab, tutorial, internship,)
lectures (8 hrs) and lab (8 hrs)
1 ECTS
Work load
-In class studying: 16 hrs
-Student managed learning: 12 hrs
Source coding aims at compressing data (analog or digital) to provide an efficient binary representation of these
data (i.e. a high compression ratio) while preserving the essential information they convey (i.e. a low distortion).
Source coding are used to transmit or store data such as speech, image or video data, and is strongly related to
other specific applications such as image classification, speech recognition, face recognition, etc.
Learning outcomes
At the end of the course, the student can
 Identify the different families of audio/speech and image/video codecs;
Analyze and characterize the performances of several quantization techniques: scalar quantization (uniform
and non-uniform), vector quantization;
• Understand the properties of the main audio codecs for use in fixed (xDSL, DVB) and mobile (GSM, 3G, 4G/LTE)
networks:
 Understand the basis of percentual audio coding: psychoacoustics and quantization poice shaping:
• Onderstand the basis of perceptual additio counties, psycholocoustics and quantization noise shaping,
 Identify the main functions embedded in a H.264-like codec (inter- and intra-frame prediction; motion)
estimation/compensation; analysis-by-synthesis codecs).
Assessment
- Written assignment (Lab report) 🗹
Language of instruction
FRENCH or ENGLISH
Additional information: B1 level is a prerequisite

Module title
Wireless communications
Module leader
Robin GERZAGUET (<u>robin.gerzaguet@enssat.fr</u>)
Type of module
(compulsory module, required
Elective module, elective module)
Compulsory module
Duration of module
30 hours
Module components / lypes of
Courses (lectures, practical course,
lab, tutorial, internship,)
Lectures (20n) and Lab (10n)
3 ECIS
-In class studying 30 hours
-III class studying 50 hours
Content
This lecture presents the constraints and specificities of wireless transmissions. Several key physical aspects are
presented such as digital baseband model of carrier frequency transmissions and deterministic and probabilistic
multipath channel models.
The second part of the lecture is dedicated to signal processing techniques dedicated to wireless transmissions
and focus on the physical layer: the mathematical model of Orthogonal Frequency Division Multiplexing (OFDM) is
presented jointly with the core aspect of the waveform. Several standards based on OFDM are finally introduced
(WiFi, LTE-4G, expected 5G)
In the lab, the student will implement an 5G-NR receiver in Python
Learning outcomes
- Digital baseband model
- Multipath channel model (WSS)
- Rayleigh and Rice channel model
- Orthogonal Frequency Division Multiplexing (OFDM)
- WiFi and 5GNR standards
Assessment
- Oral assignment 🗹
Language of instruction
ENGLISH
I Additional information: B1 level is a prerequisite

Ť.

Université de Rennes

Module title Hardware Security
Module leader
Robin GERZAGUET (<u>robin.gerzaguet@enssat.fr</u>)
Type of module
(compulsory module, required
Elective module, elective module)
Compulsory module
Duration of module
16 hours
Module components /Types of
Courses (lectures, practical course.
lab. tutorial. internship)
Lectures (13h) and Lab (12h)
2 ECTS
Work load
-In class studying 25 hours
-Student managed learning 20 hrs
Content
This course provides an in-depth understanding of hardware and software security aspects using Software Defined Radio (SDR) technology. Students will explore various attack vectors, countermeasures, and practical techniques for securing hardware and software systems. The course includes both theoretical lectures and hands-on laboratory sessions where students will gain practical experience in real-time eavesdropping and algorithm design using SDR.
Part 1: Definitions, Taxonomy, and Attackers Part 2: Hardware Attacks Part 3: Emanation Attacks Part 4: Software Defined Radio (SDR) Part 5: Countermeasures
Lab : Real-time eavesdropping of screens using SDR - Setting up SDR hardware and software - Capturing and analyzing electromagnetic emanations - Designing algorithms for screen eavesdropping
 Learning outcomes Hardware security asset especially electro-magnetic ones Models and exploits of EM side channel Use of SDR and associated digital signal processing techniques Processor vulnerabilities and countermeasures
Assessment
- Written assignment (Lab report) 🗹
Language of instruction
ENGLISH
Additional information: B1 level is a prerequisite

Module title
Technical project
Module leader
Robin GERZAGUET (<u>robin.gerzaguet@enssat.fr</u>)
i ype of module
(compulsory module, required
Compulsory module
60 hours
Module components /Types of
Courses (lectures, practical course.
lab, tutorial, internship,)
Lab (60h)
10 ECTS
Work load
-In class studying 60 hours
-Student managed learning 180 hrs
Content
This course offers students the opportunity to engage in a hands-on engineering project linked to current research
topics in digital technologies, embedded systems, or artificial intelligence (AI). The project will emphasize
interdisciplinary collaboration, research-driven problem-solving, and the application of advanced engineering
principles. Students will work on real-world challenges, developing solutions that could be implemented in
ongoing research or industrial applications.
Learning outcomes
- Apply advanced digital, embedded systems, or Al techniques to solve research or industry-related challenges.
- Design, develop, and implement innovative engineering solutions based on real-world requirements.
- Onderstand the interplay between research and engineering development.
- Present and document technical solutions in line with research and industry standards.
- Written assignment
- Oral assignment 🗹
ENGLISH
Additional information: B1 level is a prerequisite